Classification of equivariant complex vector bundles over a circle
نویسندگان
چکیده
منابع مشابه
Classification of Equivariant Complex Vector Bundles over a Circle
In this paper we characterize the fiber representations of equivariant complex vector bundles over a circle and classify these bundles. We also treat the triviality of equivariant complex vector bundles over a circle by investigating the extensions of representations. As a corollary of our results, we calculate the reduced equivariant K-group of a circle for any compact Lie group.
متن کاملClassification of Equivariant Real Vector Bundles over a Circle
This is a continuation of the authors’ previous work [CKMS99] on classification of equivariant complex vector bundles over a circle. In this paper we classify equivariant real vector bundles over a circle with a compact Lie group action, by characterizing the fiber representations of them, and by using the result of the complex case. We also treat the triviality of them. The basic phenomenon is...
متن کاملQuantization of Equivariant Vector Bundles
The quantization of vector bundles is defined. Examples are constructed for the well controlled case of equivariant vector bundles over compact coadjoint orbits. (Coadjoint orbits are symplectic spaces with a transitive, semisimple symmetry group.) In preparation for the main result, the quantization of coadjoint orbits is discussed in detail. This subject should not be confused with the quanti...
متن کاملConstruction of Equivariant Vector Bundles
Let X be the wonderful compactification of a complex adjoint symmetric space G/K such that rk(G/K) = rk(G) − rk(K). We show how to extend equivariant vector bundles on G/K to equivariant vector bundles on X , generated by their global sections and having trivial higher cohomology groups. This relies on a geometric construction of equivariant vector bundles in the setting of varieties with reduc...
متن کاملDifferential operators on equivariant vector bundles over symmetric spaces
Generalizing the algebra of motion-invariant differential operators on a symmetric space we study invariant operators on equivariant vector bundles. We show that the eigenequation is equivalent to the corresponding eigenequation with respect to the larger algebra of all invariant operators. We compute the possible eigencharacters and show that for invariant integral operators the eigencharacter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kyoto Journal of Mathematics
سال: 2001
ISSN: 2156-2261
DOI: 10.1215/kjm/1250517616